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While the number of studies providing evidence of actuarial senescence is increasing, and covers a wide
range of taxa, the process of reproductive senescence remains poorly understood. In fact, quite high
reproductive output until the last years of life has been reported in several vertebrate species, so that
whether or not reproductive senescence is widespread remains unknown. We compared age-specific
changes of reproductive parameters between two closely related species of long-lived seabirds: the small-
sized snow petrel Pagodroma nivea, and the medium-sized southern fulmar Fulmarus glacialoides. Both are
sympatric in Antarctica. We used an exceptional dataset collected over more than 40 years to assess age-
specific variations of both breeding probability and breeding success. We found contrasted age-specific
reproductive patterns between the two species. Reproductive senescence clearly occurred from 21 years of
age onwards in the southern fulmar, in both breeding probability and success, whereas we did not report
any decline in the breeding success of the snow petrel, although a very late decrease in the proportion of
breeders occurred at 34 years. Such a contrasted age-specific reproductive pattern was rather unexpected.
Differences in life history including size or migratory behaviour are the most likely candidates to account
for the difference we reported in reproductive senescence between these sympatric seabird species.
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1. INTRODUCTION

The study of age-specific variation of life-history traits in
vertebrates has become a popular topic (see for reviews on
birds Bennett & Owens (2002) and on large mammalian
herbivores Gaillard ez al. (2003)). Of particular interest is
senescence, defined as the decline in performance with age.
The theory of senescence has been widely discussed
(Partridge 1987; Kirkwood & Rose 1991; Ricklefs 1998;
Partridge & Mangel 1999; Hughes ez al. 2002), often from a
theoretical perspective, because empirical observations n
natura have often remained cryptic or disputed (Nisbet
2001). With the availability of both powerful statistical
methods (e. g. mixed models providing the possibility to
account for heterogeneity in quality among individuals
Van de Pol & Verhulst 2006; Nussey ez al. 2008) and long-
term monitoring of known-aged individuals, such investi-
gations have become possible. Moreover, age-related
patterns in nature often do not follow a linear relationship
with fitness traits (Weladji ez al. 2006), which can make
them difficult to describe accurately.

Owing to their generally extended lifespan (more then 60
years for albatrosses), seabirds are one of the predominant
animal groups to fill the gap in knowledge of life-history
patterns at old ages (Nisbet 2001; Reed er al 2008).
However, choosing seabirds as study species requires
research programmes lasting for decades, in order to gather
enough information on old birds, and due to the absence of
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external markers of age, birds have to be marked individually
as nestlings, and recaptured throughout their lives.

Studies on ageing in wild seabirds have reported
patterns of senescence, either linked to reproduction
(Weimerskirch et al. 2005; Reed et al. 2008), to foraging
abilities (Catry ez al. 2006) or to survival (see Bennett &
Owens (2002) for a review of case studies). On the other
hand, some studies have reported an increase in
reproductive performance with age (Mauck er al. 2004;
Angelier et al. 2007). In the absence of comparative
studies, the understanding of such contrasted age-specific
variation remains scarce. To fill this gap, we provide here
a first comparative study of the age-specific changes
in reproductive output between two sympatric wild
seabird species.

We studied populations of southern fulmar Fulmarus
glacialoides and snow petrel Pagodroma nivea, which have
been monitored using individual capture-mark-recapture
methods since 1963. The two species are both very long-
lived Antarctic seabirds, which only lay one egg per clutch
and per year, and have high adult survival rates
(Jenouvrier er al. 2003, 2005). Both species can thus be
ranked close to the slow end of the slow—fast continuum of
vertebrate life-history tactics (Gaillard 1989; Bielby ez al.
2007), characterized by long generation times (Gaillard
et al. 2005). We can therefore expect very weak senescence
in both survival and reproduction in these species (Jones
et al. 2008). However, since both species exhibit very high
adult survival, the theory of life-history evolution suggests
the existence of a trade-off, leading to a decreased
reproductive output with increasing age. We therefore
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tested whether reproductive senescence occurred in these
two closely related, sympatric species, and if so, at which
age reproductive senescence begins.

2. MATERIAL AND METHODS

(a) Study site and species

From 1963 onwards, annual ringing and recapture sessions of
adult birds and chicks of both species took place on Ile des
Pétrels, Pointe Géologie Archipelago (66°40’ S, 140°01' E),
Terre Adélie, Antarctica. The three colonies of snow petrels
and the only colony of southern fulmars at Pointe Géologie
were intensively surveyed each year. We pooled data from the
three colonies of snow petrels because no difference occurred
in breeding performance. More details on the monitoring
are provided in Chastel ez al. (1993) and Barbraud &
Weimerskirch (2001).

The species considered here are very long lived, have a
very high adult survival (93.4% 0.3 for the snow petrel
(Chastel er al. 1993), 92.3% 10.6 for the southern fulmar
(Jenouvrier ez al. 2003)), lay only one egg, and both sexes
contribute equally to parental care. However, the species
differ in other life-history traits.

The snow petrel PR nivea (Forster) is the smallest species
(approx. 400 g) of the fulmarine petrel group. Snow petrels
breed in large numbers along the coast of Antarctica, where
they forage in close association with the pack ice, feeding
mostly on fish (Ainley ez al. 1984; Ridoux & Offredo 1989).
They are resident in Antarctic waters throughout the
year. Snow petrels are characterized by a relatively low level
of philopatry compared with other petrels (Chastel er al.
1993). In spite of this low philopatry, once a snow petrel
has selected a breeding colony, it remains faithful to this place
in the future and, therefore, if not observed between two
breeding events, it can be confidently assumed that it did not
breed elsewhere during this period (Jenouvrier ez al. 2003).

Southern fulmars (700-1200 g) are cliff-nesting seabirds
that forage in Antarctic waters in summer, but move up to
sub-Antarctic waters in winter and prey mainly on euphau-
siids, fishes, crustaceans and squid (Ainley er al. 1984;
Ridoux & Offredo 1989). Unlike snow petrels, southern
fulmars are highly philopatric (Jenouvrier ez al. 2003). As for
the snow petrel, if a bird is not observed between two
breeding attempts, it can be confidently assumed that it did
not reproduce.

(b) Description, extraction and selection of the
environmental variables

We used one local variable, the sea ice extent (SIE), and one
large-scale variable, the southern oscillation index (SOI), to
account for possible confounding effects of environmental
conditions. Both variables are known to influence the focal
species (Jenouvrier er al. 2003, 2005).

The SOI was obtained for the period 1973-2004 (see
http://www.bom.gov.au/climate/current/soihtml.shtml).

The SIE, expressed in units of 1000 km?, was available from
1973 to 1990 only, for 1° latitude X 10° longitude slices (see
http://nsidc.org/data/g00917.html). Since Ile des Pétrels is
situated at 66°40’ S, 140°01’ E, we extracted and averaged the
SIE between the longitudes 130°-140° and 140°-150°. Since
no SIE was available after 1990, we interpolated the second
period from 1990 to 2004 using the sea ice concentration
values (See http://ingrid.ldgo.columbia.edu/SOURCES/.
IGOSS/.nmc/.Reyn_SmithOIv2/.monthly/.sea_ice/). These
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data covered a grid of 1°X1° and a cell was considered as
covered by ice when the concentration exceeded a specific
value. We calculated the extent of ice (in units of 1000 km?) for
longitudinal slices (130°-140° and 140°-150°). To correct for
the difference in sampling between the two time periods (1973—
1990 and 1990-2004), each measure was standardized with
respect to the specific mean of the period. Finally, we used the
mean SIE for April-June as it has been shown that this period
critically influenced the breeding ecology of the focal species
(Jenouvrier er al. 2005). Correlation tests (using Pearson’s
correlation coefficient) did not show any significant collinearity
between the climatic variables.

(¢) Data and statistical analysis

For both species, our analyses included all birds of known age
(i.e. ringed as chicks and later recaptured as breeders), that
reached sexual maturity and for which the breeding status was
observed every year since fledging (snow petrel: n=112;
southern fulmar: #=177). For the snow petrel, we only
included individuals that reproduced more than once, to avoid
considering transient birds. Age of maturity for each species
was based on previous results (Chastel ez al. 1993; Jenouvrier
et al. 2003). We used the breeding success at fledging, defined
as the probability of a chick fledging from the laid egg.
Breeding probability was defined as the proportion of breeding
birds in each age group, considering that they had reached
maturity and that they were alive. For both species, the
detection probability of an individual was close to one, because
all nests are checked several times during each breeding season.
We did not perform separate analyses for sexes, since the
information was unavailable for the southern fulmar, and would
have dramatically reduced the sample size for the snow petrel.

The two species (especially the snow petrel; Chastel ez al.
1993) show a marked between-year variation in breeding
success and breeding probability. They are prone to skip
reproduction (breeding probability) during unfavourable
environmental conditions.
annual breeding success and breeding probability at the
population level as a proxy for year quality by adding it as a
covariate in our models in order to reduce the amount of
variation not due to age effect.

We first created sets of candidate models and used the
Akaike information criterion (AIC) to select the most
parsimonious model (Burnham & Anderson 1998). We also
computed Akaike weights (w,), which provide a measure of
the relative likelihood of a given model to be the best among
the models fitted.

We fitted linear, quadratic and logarithmic relationships on
a logit scale to model the age-specific variation in reproductive
traits (see table 1) by using generalized linear mixed models
(package glmmML) in the software R, v. 2.6.2 (R Core
Development Team 2005). Preliminary analyses showed that
in all cases, mixed models described the data more appro-
priately than simple general linear models, confirming marked
individual heterogeneities in reproductive traits. Such a
procedure allowed us to account for the problem of pseudo-
replication that occurs when using repeated measures of the
same individuals (Hurlbert 1984). Note, however, that not
accounting for individual variation (i.e. using GLM) led to
much higher AIC but did not change the results, leading to
only a small underestimation of slopes in the last life stage.
Additionally, we fitted threshold models, including three
stages: (i) the progressive access to reproduction from the
age of maturity to a first threshold age 7, (ii) a prime-age stage

We therefore used the mean
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Table 1. Summary of the 36 candidate models tested. (The model formula presents the full model for each trend fitted. All
intermediate models were tested, see appendix (table S1 and S4 in the electronic supplementary material). Bs, breeding success;
Bp, breeding probability; bs,,,, inter-annual variations in breeding success; bp,.,, inter-annual variations in breeding
probability; SOI, southern oscillation index; SIE,,umn, S€a ice extent values for autumn; asterisk stands for an interaction.)

model formula biological meaning number
Bs (or Bp) ~1 no effect of age on reproduction 1

Bs (or Bp) ~age linear effect of age on reproduction 2

Bs (or Bp) ~age+age? +bsunn (0r bpann) +SOI+ SIE,ueumn quadratic effect of age on reproduction 3-10
Bs (or Bp) ~log(age) +bsann (Or bpann) +SOI+ SIE utumn logarithmic effect of age on reproduction 11-18

Bs (or Bp) ~bsann (OF bpann)

mean annual breeding output only explains 19
variations of reproduction

Bs (or Bp) ~T1+T2+ bsgy, (0r bpann) + SOI+SIE, urumn existence of one threshold age (6 <7,<34) 20 to 27

Bs (or Bp) ~T1+T2+T3+ bsau, (or bpann) +SOI4SIE, wrumn existence of two threshold ages 28-35
(6<71<20, 21 <7,<34)

Bs (or Bp) ~T1+T2+T3+ bsyn, (0f bpann) +bSann (0r bpann) *T3  existence of two threshold ages and an 36

interaction between year quality and age

between 7; and 7, with a maximum reproductive output, and
(iii) a senescent stage from the second threshold age 7,, from
which the reproductive output decreases. For each com-
bination of threshold values (e. g. 7;=12 years and 7,=23
years for a two-threshold model), a generalized linear mixed
model was fitted (see table 1). The best threshold models were
determined using AIC profiles. We further tested for
interactions between year quality (measured by the mean
annual breeding value) and senescence rate (see table 1) when
senescence occurred, to assess a possible change of senescence
patterns in response to variation in environmental conditions
(as recently reported in red deer (Cervus elaphus) according
to changes of density at birth, Nussey ez al. 2007)

3. RESULTS
(a) Age-specific breeding success
The breeding success of the southern fulmar was best
fitted by a two-threshold model including the effects of
year-to-year variations in breeding success and SOI
(Model 33, table 1). The first threshold age was 6 years,
and between 6 and 21 years, the reproductive success of
birds increased from 55 per cent at 6 years to 75 per cent at
21 years, at an annual rate of 0.07 on a logit scale (+0.02,
table 2). From 21 years of age onwards, the breeding
success of birds decreased with age at an annual rate of
0.07 (slope of —0.07 +0.04, table 2). Towards the end of
their life, southern fulmars have approximately the same
breeding success as they had at 6 years of age. This model
also included a positive effect of the SOI on breeding
success (slope of 0.23+0.09 on a logit scale, table 2) and
accounted for 70 per cent of the variation observed in
breeding success among individual fulmars (w;=0.46;
figure la; appendix, table 6 for threshold selection, and
table S1 in the electronic supplementary material for
details of model selection). A model including an
interaction term between senescence rate and annual
breeding success did not improve the fit (see appendix,
model 36, table S1 in the electronic supplementary
material), indicating that senescence of breeding success
was not influenced by environmental conditions.

The best model (model 21, table 1) for snow petrels was
a one-threshold model, including annual breeding success
and showing the expected increase of breeding success
throughout the early ages (threshold at 10 years), at a rate of
0.64 (+0.27, table 3) on a logit scale. After having reached
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Table 2. Effect of age on the breeding success—parameter
estimates from the best model—SOUTHERN FULMAR—
estimates of each parameter are presented with their standard
error (s.e.). (bsgun: inter-annual variations in breeding
success, SOI, southern oscillation index).

two thresholds

term estimate s.e.

(intercept) —55.772  70.526
slope before the first threshold age 8.822 11.754
slope between the first and the second 0.072 0.022

threshold ages

slope after the second age threshold —0.068 0.044
bSann 4630  0.744
SOI 0.234 0.093

a breeding success of 50 per cent at 10 years, the birds
maintain high reproductive success until the oldest ages,
since the slope (0.03+0.02, table 3) indicates a trend of
increasing success with increasing age. This model fitted
the data very well, accounting for approximately 83 per cent
of the observed variation in breeding success among
individuals (w;=0.25). No influence of either the SOI or
the SIE could be detected, as the models incorporating
those variables had very low w; (figure 1b; appendix, table 7
for threshold selection, and table S2 in the electronic
supplementary material for details of model selection).

(b) Age-specific breeding probability

For southern fulmars, the model selected to describe
breeding probability (model 29, table 1) followed the same
pattern as for breeding success, except that the effects of
SOI were not included. Breeding probability increased to
50 per cent at 6 years, and continued to increase (slope of
0.06+0.02 on a logit scale, table 4) until 21 years of age,
when it reached a peak, with 68 per cent of birds breeding.
From 21 years of age onwards, breeding probability
decreased at a high rate (slope of —0.10+0.04 on a
logit scale, table 4). The selected model (w;=0.41)
accounted for 41 per cent of the variation in breeding
probability observed among individual fulmars (figure 2a;
appendix, table 8 for threshold selection, and table S3 in
the electronic supplementary material for details of model
selection). Again the model including an interaction term



378 M. Berman er al. Age-specific reproduction in seabirds

(a) 1.0 e o o

o
o0
1

e
(@)
1

breeding success

2_ sk
0 R2=0.70

R%?=0.83""

5 10 15 20 25 30 35
age

5 10 15 20 25 30 35
age

Figure 1. Breeding success in relation to age, starting at age of first breeding. (a) The southern fulmar and () the snow petrel. The
average observed value for each age is plotted with dotted standard error bars, with predictions from the threshold model.
Thresholds are at 6 years and 21 years for the southern fulmar, and at 10 years for the snow petrel. Pearson’s correlation coefficients
between the prediction of the best model and the averaged observed value are indicated below the curve. **p<0.01.

between senescence rate and annual breeding probability
did not improve the fit (see appendix, model 36, table S3
in the electronic supplementary material).

For snow petrels, the model including two thresholds
and the year-to-year variations of breeding decision
(model 29, table 1) best described individual variation in
observed breeding probabilities. Breeding probabilities
increased from O at 5 years of age to 45 per cent at 6 years,
the first threshold age, then increased at an annual rate of
0.02 (£0.01 on a logit scale, table 5), but over an
extended period (between 6 and 34 years of age), by the
end of which, approximately 80 per cent of birds were
breeding. After this, breeding probability dropped
abruptly (slope of —1.284+0.57 on a logit scale,
table 5). This model accounted for 74 per cent of the
observed variations in breeding probability of individual
petrels (w;=0.33; figure 2b; appendix, table 9 for
threshold selection, and table S4 in the electronic
supplementary material for details of model selection).

4. DISCUSSION

Our main goal was to examine whether senescence of
reproductive traits can be detected in two populations of
long-lived seabirds, using a remarkably long dataset and
accounting for individual differences in quality that can
prevent the detection of senescence (Cam et al. 2002). We
found that a marked contrast occurred in age-specific
changes of reproduction between the two sympatric long-
lived bird species. The southern fulmar, with an annual
adult survival of 0.923 (Jenouvrier et al. 2003), showed
clear evidence of senescence in both breeding probability
and breeding success from 21 years of age onwards, for
a maximum longevity of more than 45 years, whereas the
snow petrel, with an annual adult survival of 0.934
(Chastel et al. 1993), did not show any sign of senescence
in breeding success, and breeding probability did not
decrease before 34 years of age for a maximum longevity of
more than 46 years.

(a) Southern fulmar: evidence of senescence

Of the two species studied, only the southern fulmar showed
clear evidence of reproductive senescence. The decrease
was clear for both breeding success and breeding prob-
ability. Reproductive senescence has already been shown in
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Table 3. Effect of age on the breeding success—parameter
estimates from the best model—SNOW PETREL—estimates
of each parameter are presented with their standard error
(s.e.). (bsann: inter-annual variations in breeding success).

one threshold

term estimate s.e.

(intercept) —9.253 2.714
slope before the threshold 0.642 0.273
slope after the threshold 0.027 0.017
bSann 5.227 0.554

Table 4. Effect of age on the breeding probability—parameter
estimates from the best model—SOUTHERN FULMAR—
estimates of each parameter are presented with their standard
error (s.e.). (bpann: inter-annual variations in breeding
probability).

two thresholds

term estimate  s.e.

(intercept) —68.527 302.655

slope before the first threshold age 10.908 50.443

slope between the first and the 0.058 0.018
second threshold ages

slope after the second age threshold —0.096 0.035

bPann 5.486 0.409

numerous studies carried out on a wide range of vertebrates
(Bennett & Owens 2002 on birds, Gaillard ez al. 2003 on
large mammals and Reznick ez al. 2002 on fishes), including
seabirds (Weimerskirch ez al. 2005 on wandering albatross,
Diomedea exulaus, Reed et al. 2008 on common guillemot,
Uria aalge). The pattern of age-specific breeding success
found in the fulmar is very similar to that of wandering
albatrosses (Weimerskirch ez al. 2005), i.e. a progressive
decline when only half the maximum longevity is reached.
Since the study on guillemots did not include age-specific
breeding success, but time before death (Reed ez al. 2008),
the pattern observed is not directly comparable, although
this study showed an abrupt decline 3 years before death
and a progressive decline 10 years before death over a study
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Figure 2. Breeding probability in relation to age, starting at age offirst breeding. (@) The southern fulmar and (b) the snow petrel. The
average observed value for each age is plotted with standard error bars, with predictions from the threshold model. Thresholds are at 6
years and 21 years for the southern fulmar, and at 6 years and 34 years for the snow petrel. Pearson’s correlation coefficients between
the prediction of the best model and the averaged observed value are indicated below the curve. *p<0.05. **p<0.01.

period of 23 years, a pattern similar to that reported here for
fulmars. Reproductive senescence in fulmar did not seem to
be influenced by variation in the year quality. This might
reflect a true independence between environmental con-
ditions and senescence patterns. Alternatively, fluctuating
year quality throughout the reproductive life of individuals
in this long-lived bird could have masked any effect of
environmental variation on senescence in our analysis.

(b) Snow petrel: no or very late indication

Jor senescence

Interestingly, we did not find any support for senescence in
the breeding success of snow petrels. On the contrary, the
tendency was even towards a slight continuous increase.
Another study, using a measure of prolactin levels
throughout life (Angelier ez al. 2007), reported the absence
of a decrease in a reproductive trait with age in snow petrels.
It shows that older breeders had higher prolactin levels than
younger ones, which is associated with a lower probability
of neglecting the egg. Our results therefore go in the same
direction. However, we found an indication that breeding
probability may decline at old ages in this species. Owing to
this late decline (i.e. when two-third or more of the
maximum longevity has been reached), we can suspect that
it represents only the trajectory of very few birds, or the
possibility that after a certain age, the birds remain at sea,
avoiding this way the costs of a breeding event during poor
years. Thus, in old age, birds could breed successfully only
when conditions are favourable, and otherwise skip a
breeding attempt. Since intermittent breeding is common
in petrels and albatrosses, it is important to consider also
the probability of breeding as a measure of breeding
performance, when studying these species. By looking at
only breeding success, we would be unable to distinguish
between those birds that are alive but not willing to
reproduce, and birds that have died.

Senescence is widespread among seabirds, but our
results showing the absence of reproductive senescence in
snow petrel are in line with those from a study on Leach’s
storm petrel Oceanodroma leucorhoa (Mauck et al. 2004).
In this species, hatching success, defined as the presence
or absence of a chick after one egg was laid did not
decline with increasing age, but remained constant until
old age, after an initial sharp increase.
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Table 5. Effect of age on the breeding probability—parameter
estimates from the best model—SNOW PETREL—estimates
of each parameter are presented with their standard error
(s.e.). (bpann: inter-annual variations in breeding probability).

two thresholds

term estimate s.e.

(intercept) —36.339  68.620

slope before the first threshold age 5.630 11.437

slope between the first and the second 0.021 0.013
threshold ages

slope after the second age threshold —1.281 0.568

bPann 4.714 0.435

(¢) Possible explanation for contrasted patterns
of reproductive senescence between two closely
related species
Why are these two closely related species so different in the
way breeding success and decision change with age? Two
important differences exist between them. First, snow petrels
are smaller than southern fulmars, and it is noticeable that
the only other seabird species showing a similar pattern to
that of the snow petrel is a small-sized storm petrel (Mauck
et al. 2004). Although both species have similar life histories
(high survival rates, low number of eggs laid, large amount of
parental care, etc.), snow petrels are longer lived than fulmars
and skip reproduction more frequently (Jenouvrier et al.
2005), leading them to have a longer generation time than
fulmars. Jones er al. (2008) have recently shown that the
magnitude of senescence is tightly linked with generation
time, with slower species having later and weaker senescence.
Note that although Jones ez al. (2008) included the fulmar
population analysed here in their comparative work,
differences in reproductive measures considered and
different analytical procedures preclude any comparison
between the two studies. The between-species difference in
reproductive senescence we report here could illustrate such
a link between senescence and speed of the life-history cycle.
The other major difference between the two species is the
migratory behaviour of the southern fulmar during winter,
whereas the snow petrel is sedentary and remains closely
associated with the pack ice during the whole year. Mgller &
De Lope (1999) found that the migratory performance of
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